
Reasons not to Decouple

John Grubb
Director of Customer Care, Pla7orm.sh

1

Why do developers and teams
decide to build decoupled or
microservice architectures?

• Serving mul-ple devices

• Performance

• Developer happiness (because your
CMSs theming layer)

• or, more realis-cally, a combo of the
above

2

Why do developers and teams
really decide to build

decoupled or microservice
architectures

• New tech is fun!

• New tech is good for the resume!

• [Pie in the sky ideas about being able to
move more quickly here]

• You want to learn new things (arguably
the best reason)

3

Ques%on - how o,en do you
run composer update on

your Drupal projects?

• Follow up: How o+en do you spend
1me unbreaking things a+er that?

• Follow up: How o+en do you update
your npm deps?

• Follow up: How o+en do you spend
1me unbreaking things a+er that?

4

If you were aware
of all the nuances

you're going to
meet while building
that decoupled app,
you would not build
that decoupled app.

5

Exo$c technologies
are literally Satan

6

Reasons NOT to decouple

John Grubb
Director of Customer Care, Pla7orm.sh

@johnnygrubb on Twi/er
@jgrubb on the Pla5orm.sh Slack

7

https://twitter.com/JohnnyGrubb

About Myself

• Began with Drupal in 2009

• Built a few decoupled sites using mostly Angular 1.x and D7

• Working from PlaCorm.sh 4 years

• Lead the Customer Care team

• Customer Success Managers

• Customer Success Engineers - onboarding and professional
services

8

A chat about dependencies

Managing dependencies is hard, o0en thankless work.

• they go out of date, o.en without telling you

• upda4ng them is rarely easy in prac4ce, some4mes extremely
fraught if a site has been le. untended.

9

Composer and Drupal

10

NPM and NodeJS-framework-du jour

11

The dependency
between your frontend

and your backend.

12

Your dependency on your developers

Drupal devs are expensive. Javascript devs are also expensive. You
need both now, unless you're going to have one person do both.

13

The Distributed Monolith

• Distributed apps have a dependency on
the network. The network is orders of
magnitude slower than your local dev
environment.

• Where and how do you cache? Where
and how do you clear things out?

14

Special men+on: GraphQL

{
 project(name: "GraphQL") {
 tagline
 }
}

Usecase

Frontend app -> GraphQL server -> Drupal
 \--> some web service.

15

re: the development process

• How do you keep frontend and backend in sync?

• How do you keep them in sync across development branches?

• What if the frontend depends on a backend feature/change?

16

re: the deployment process

• If the frontend depends on a backend feature, how do you roll
those out without losing your mind?

17

Are you really sure about this?

18

Par$ng advice from your friendly cloud
hos$ng vendor

1. Just think about these points in the planning phase. Think about
network latency. Think about the deployment strategy.

2. Deploy to dev environments out in the wild. Deploy early and
o=en. This will give you some idea of how the Thing performs
out in the wild, and across the big, bad network.

3. Budget Bme to figure these things out in your esBmates.

19

